clusterProfiler:GSEA基本绘图演示

GSEA分析

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
require(clusterProfiler)
require(enrichplot)
rres <- readRDS('DEGs_X1.OE.DMSO_X2.OE.DMSO_vs._X1.control.DMSO_X2.control.DMSO_DESeq2.rds')
lgene <- rres$log2FoldChange
names(lgene) <- rres$symbol
WP <- readRDS('WP.hsa.rds')
WP$TERM2NAME$name <- gsub('%.*%Homo sapiens', '', WP$TERM2NAME$name)
set.seed(0)
gse.WP <- GSEA(gene = lgene,
pAdjustMethod = "fdr",
eps = 0,
pvalueCutoff = 0.1,
TERM2GENE = WP$TERM2GENE,
TERM2NAME = WP$TERM2NAME)
require(tidyverse)
require(enrichplot)
require(DOSE)
f_kegg_p <- function(keggr2, n = 15){
keggr <- subset(keggr2@result, p.adjust < 0.05)
keggr[['-log(Padj)']] <- -log10(keggr[['p.adjust']])
keggr[['geneRatio']] <- parse_ratio(keggr[['GeneRatio']])
keggr$Description <- factor(keggr$Description,
levels=keggr[order(keggr$geneRatio),]$Description)
ggplot(head(keggr,n),aes(x=geneRatio,y=Description))+
geom_point(aes(color=`-log(Padj)`,
size=`Count`))+
theme_bw()+
scale_color_gradient(low="blue1",high="brown1")+
labs(y=NULL) +
theme(axis.text.x=element_text(angle=90,hjust = 1,vjust=0.5, size = 12),
axis.text.y=element_text(size = 15))
}
f_title <- function(gp,title){
gp + labs(title = title) + theme(plot.title = element_text(hjust = 0.5))
}
gse.WP@result

通路总图

1
2
3
4
5
6
7
8
9
10
11
require(ggplot2)
require(stringr)
options(repr.plot.width=8, repr.plot.height=8)
gse.WP@result['Ratio'] <- with(gse.WP@result, ((str_count(core_enrichment, '/') + 1) / setSize))
gse.WP@result$Description <- with(gse.WP@result,factor(Description, levels = Description[order(NES)]))
p <- ggplot(subset(gse.WP@result, NES>0),aes(NES,Description))
p <- p + geom_point(aes(size=Ratio,color=-log10(qvalues))) + scale_size(range = c(5,10))
p <- p + scale_color_continuous(low=rgb(1,0,0,0.5) ,high=rgb(0,0,1,0.5))
p <- p + theme_bw() + theme(axis.text=element_text(size=20),axis.title=element_text(size=20))
p <- p + scale_y_discrete(labels=function(y){str_wrap(y,width = 20)})
p

GSEA图

1
2
3
options(repr.plot.width=8, repr.plot.height=8)
p <- gseaplot2(gse.WP, geneSetID=27, color = 'gray', ES_geom = 'dot', base_size = 20)
p

通路网络图

1
2
3
gse.WP2 <- pairwise_termsim(gse.WP)
p <- emapplot(gse.WP2, showCategory=subset(gse.WP@result, NES>0)$Description)
p

通路基因图

1
2
3
4
#  Layout of the map, e.g. 'star', 'circle', 'gem', 'dh', 'graphopt', 'grid', 'mds', 'randomly', 'fr', 'kk', 'drl' or 'lgl'.
options(repr.plot.width=8, repr.plot.height=8, ggrepel.max.overlaps = Inf)
p <- cnetplot(gse.WP2, foldChange=lgene, showCategory=subset(gse.WP@result, NES>0)$Description, layout = "dh")
p

clusterProfiler:GSEA基本绘图演示
https://occdn.limour.top/2142.html
Author
Limour
Posted on
July 22, 2022
Licensed under