之前在自己的小机器上分析,现在需要在学校集群进行分析,因此需要在两个没有公网ip且不互联的服务器之间转移大量数据。因此计划使用Rclone,通过OneDrive进行中转。
打包需要转移的数据
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
| data <- list() ref_sce <- readRDS('~/upload/zl_liu/data/pca.rds') data$zyy_umi <- ref_sce@assays$RNA@counts data$zyy_meta <- ref_sce@meta.data ref_sce <- readRDS('~/work_st/Prognosis/idea_2/fig3.2/fig6/sce.rds') data$ch_umi <- ref_sce@assays$originalexp@counts data$ch_meta <- ref_sce@meta.data
tp_dir <- list( P1 = '~/work/GSE137829/GSM4089151_P1_gene_cell_exprs_table.txt.gz', P2 = '~/work/GSE137829/GSM4089152_P2_gene_cell_exprs_table.txt.gz', P3 = '~/work/GSE137829/GSM4089153_P3_gene_cell_exprs_table.txt.gz', P4 = '~/work/GSE137829/GSM4089154_P4_gene_cell_exprs_table.txt.gz', P5 = '~/work/GSE137829/GSM4711414_P5_gene_cell_exprs_table.txt.gz', P6 = '~/work/GSE137829/GSM4711415_P6_gene_cell_exprs_table.txt.gz' ) sce <- list() for (i in names(tp_dir)){ tmp <- read.table(gzfile(tp_dir[[i]]), header = T) umi <- Matrix::as.matrix(x = tmp[-c(1,2)]) umi <- Matrix::Matrix(data = umi, sparse = T) rownames(umi) <- tmp$Symbol sce[[i]] <- Seurat::CreateSeuratObject(umi, project = i, min.cells = 3, min.features = 200) } sce <- Reduce(merge, sce) data$geo_umi <- sce@assays$RNA@counts data$geo_meta <- sce@meta.data saveRDS(data, '22.10.04.rds')
|
Rclone挂载OneDrive
- conda activate jupyter
- conda install -c conda-forge rclone -y
在两台服务器上挂载同一个OneDrive,第二台可以直接使用第一台的配置
Rclone上传下载数据
- rclone copy –ignore-existing –progress –ignore-errors –transfers=1 ./22.10.04.rds onedrive:tmp
- rclone ls onedrive:tmp
- rclone copy –ignore-existing –progress –ignore-errors –transfers=1 onedrive:tmp/22.10.04.rds .