- TMM:The Trimmed Mean of M value by edgeR
- VST:The variance stabilizing transformation by DESeq2
- RLOG:The regularized-logarithm transformation by DESeq2
Counts矩阵来源于STAR匹配得到的结果:df <- read.csv('GSE123379.csv', row.names = 1)
安装补充包
TMM方法
1 2 3 4 5 6 7 8 9
| f_counts2TMM <- function(countsMatrix){ require(edgeR) TMM <- DGEList(counts = countsMatrix) TMM <- calcNormFactors(TMM, method = 'TMM') cpm(TMM, normalized.lib.sizes = TRUE, log=F) } countsMatrix <- df[-(1:3)] TMM <- f_counts2TMM(countsMatrix) TMM
|
VST方法
1 2 3 4 5 6 7 8 9 10 11 12 13
| f_counts2VST <- function(countsMatrix){ require(DESeq2) conditions <- factor(rep("Control",ncol(countsMatrix))) colData_b <- data.frame(row.names = colnames(countsMatrix), conditions) dds <- DESeqDataSetFromMatrix(countData = countsMatrix, colData = colData_b, design = ~ 1) vsd <- vst(object=dds, blind=T) assay(vsd) } countsMatrix <- df[-(1:3)] VST <- f_counts2VST(countsMatrix) VST
|
RLOG方法
1 2 3 4 5 6 7 8 9 10 11 12 13
| f_counts2RLOG <- function(countsMatrix){ require(DESeq2) conditions <- factor(rep("Control",ncol(countsMatrix))) colData_b <- data.frame(row.names = colnames(countsMatrix), conditions) dds <- DESeqDataSetFromMatrix(countData = countsMatrix, colData = colData_b, design = ~ 1) rld <- rlog(object=dds, blind=T) assay(rld) } countsMatrix <- df[-(1:3)] RLOG <- f_counts2RLOG(countsMatrix) RLOG
|