clusterProfiler:构建MsigDB的数据库

clusterProfiler:自定义数据库中展示过构建HALLMARKS的方式,但是速度有点慢,这里简单改动一下,对C5_HPO进行构建。

构建

1
2
3
4
5
6
7
8
9
10
11
12
13
text <- readLines("c5.hpo.v7.5.1.symbols.gmt", encoding = "UTF-8")
text <- strsplit(text, "\t")
H.ALL <- list(TERM2GENE=data.frame(), TERM2NAME=data.frame())
for (i in 1:length(text)){
line <- text[[i]]
gsid <- line[1]
H.ALL$TERM2NAME <- rbind(H.ALL$TERM2NAME, c(i,gsid))
lc_gsid <- rep(x = i, times = (length(line)-2))
H.ALL$TERM2GENE <- rbind(H.ALL$TERM2GENE, cbind(lc_gsid,line[3:length(line)]))
}
colnames(H.ALL$TERM2NAME) <- c('gsid', 'name')
colnames(H.ALL$TERM2GENE) <- c('gsid', 'gene')
saveRDS(H.ALL, 'C5.HPO.rds')

富集

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
require(tidyverse)
require(enrichplot)
require(DOSE)
require(stringr)
require(clusterProfiler)
f_kegg_p <- function(keggr2, n = 15){
keggr <- subset(keggr2@result, p.adjust < 0.1)
keggr[['-log(Padj)']] <- -log10(keggr[['p.adjust']])
keggr[['geneRatio']] <- parse_ratio(keggr[['GeneRatio']])
keggr$Description <- factor(keggr$Description,
levels=keggr[order(keggr$geneRatio),]$Description)
ggplot(head(keggr,n),aes(x=geneRatio,y=Description))+
geom_point(aes(color=`-log(Padj)`,
size=`Count`))+
theme_bw()+
scale_color_gradient(low="blue1",high="brown1")+
labs(y=NULL) +
theme(axis.text.x=element_text(angle=90,hjust = 1,vjust=0.5, size = 12),
axis.text.y=element_text(size = 15))+
scale_size(range = c(5,10)) +
theme(axis.text=element_text(size=20),axis.title=element_text(size=20)) +
scale_y_discrete(labels=function(y){str_wrap(gsub('_', ' ', y),width = 20)})
}
f_title <- function(gp,title){
gp + labs(title = title) + theme(plot.title = element_text(hjust = 0.5))
}
1
2
3
4
5
6
7
8
9
10
KEGG <- readRDS('../MsigDB/C5.HPO.rds')
set.seed(0)
res <- enricher(gene = DEGPH$Name,
pAdjustMethod = "fdr",
pvalueCutoff = 0.1,
qvalueCutoff = 0.1,
TERM2GENE = KEGG$TERM2GENE,
TERM2NAME = KEGG$TERM2NAME)
options(repr.plot.width=8, repr.plot.height=12)
f_kegg_p(res, n =15) %>% f_title("C42vsLNCaP_EtOH_C5_HPO")

GSEA以及其他高级绘图,注:GESA添加nPermSimple = 100000可以提高P值计算准确性

通过预分配的方式进行构建

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
text <- readLines("c5.all.v7.5.1.symbols.gmt", encoding = "UTF-8")
text <- strsplit(text, "\t")
pre_len <- 0
for (i in 1:length(text)){
line <- text[[i]]
pre_len <- pre_len + (length(line)-2)
}
H.ALL <- list(TERM2NAME=data.frame(), TERM2GENE=data.frame(gsid=rep(NA,pre_len), gene=rep(NA,pre_len)))
pre_tmp <- 0
for (i in 1:length(text)){
line <- text[[i]]
gsid <- line[1]
H.ALL$TERM2NAME <- rbind(H.ALL$TERM2NAME, c(i,gsid))
pre_genelen <- (length(line)-2)
lc_gsid <- rep(x = i, times = pre_genelen)
H.ALL$TERM2GENE[(pre_tmp+1):(pre_tmp + pre_genelen),] <- cbind(lc_gsid,line[3:length(line)])
pre_tmp <- pre_tmp + pre_genelen
}
colnames(H.ALL$TERM2NAME) <- c('gsid', 'name')
colnames(H.ALL$TERM2GENE) <- c('gsid', 'gene')
saveRDS(H.ALL, 'C5.all.rds')

clusterProfiler:构建MsigDB的数据库
https://occdn.limour.top/2190.html
Author
Limour
Posted on
August 7, 2022
Licensed under